The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Ebbe Nordlander. Portrait.

Ebbe Nordlander

Professor

Ebbe Nordlander. Portrait.

Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions

Author

  • Mainak Mitra
  • Hassan Nimir
  • Serhiy Demeshko
  • Satish Bhat
  • Sergey O. Malinkin
  • Matti Haukka
  • Julio Lloret-Fillol
  • George C. Lisensky
  • Franc Meyer
  • Albert A. Shteinman
  • Wesley R. Browne
  • David A. Hrovat
  • Michael G. Richmond
  • Miquel Costas
  • Ebbe Nordlander

Summary, in English

Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L1) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L2), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [FeII(CH3CN)(L)]2+ (L = L1 (1); L2 (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [FeIV(O)(L)]2+ (L = L1 (3); L2 (4)), which were characterized by UV–vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L1) and 2.5 h (L = L2). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([FeIV(O)(N4Py)]2+), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [FeIV(O)(L2)]2+ exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C–H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

Department/s

  • Chemical Physics

Publishing year

2015

Language

English

Pages

7152-7164

Publication/Series

Inorganic Chemistry

Volume

54

Issue

15

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Inorganic Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-510X